A Computer-Driven Approach to Discover Natural Product Leads for Methicillin-Resistant Staphylococcus aureus Infection Therapy

Author:

Dias Tiago,Gaudêncio Susana,Pereira FlorbelaORCID

Abstract

The risk of methicillin-resistant Staphylococcus aureus (MRSA) infection is increasing in both the developed and developing countries. New approaches to overcome this problem are in need. A ligand-based strategy to discover new inhibiting agents against MRSA infection was built through exploration of machine learning techniques. This strategy is based in two quantitative structure–activity relationship (QSAR) studies, one using molecular descriptors (approach A) and the other using descriptors (approach B). In the approach A, regression models were developed using a total of 6645 molecules that were extracted from the ChEMBL, PubChem and ZINC databases, and recent literature. The performance of the regression models was successfully evaluated by internal and external validation, the best model achieved R2 of 0.68 and RMSE of 0.59 for the test set. In general natural product (NP) drug discovery is a time-consuming process and several strategies for dereplication have been developed to overcome this inherent limitation. In the approach B, we developed a new NP drug discovery methodology that consists in frontloading samples with 1D NMR descriptors to predict compounds with antibacterial activity prior to bioactivity screening for NPs discovery. The NMR QSAR classification models were built using 1D NMR data (1H and 13C) as descriptors, from crude extracts, fractions and pure compounds obtained from actinobacteria isolated from marine sediments collected off the Madeira Archipelago. The overall predictability accuracies of the best model exceeded 77% for both training and test sets.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Reference56 articles.

1. Antibiotic resistance mechanisms in bacteria: Biochemical and genetic aspects;Dzidic;Food Technol. Biotechnol.,2008

2. Global methicillin-resistant Staphylococcus aureus (MRSA) infections and current research trends;Gallagher;Arch. Gen. Intern. Med.,2017

3. Methicillin Resistant Staphylococcus Aureus (MRSA);Siddiqui,2018

4. Incidence of methicillin resistant Staphylococcus aureus (MRSA) in burn intensive care unit: a systematic review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3