Canonical Transformation of Potential Model Hamiltonian Mechanics to Geometrical Form I

Author:

Strauss Yosef,Horwitz Lawrence P.,Levitan JacobORCID,Yahalom AsherORCID

Abstract

Using the methods of symplectic geometry, we establish the existence of a canonical transformation from potential model Hamiltonians of standard form in a Euclidean space to an equivalent geometrical form on a manifold, where the corresponding motions are along geodesic curves. The advantage of this representation is that it admits the computation of geodesic deviation as a test for local stability, shown in recent previous studies to be a very effective criterion for the stability of the orbits generated by the potential model Hamiltonian. We describe here an algorithm for finding the generating function for the canonical transformation and describe some of the properties of this mapping under local diffeomorphisms. We give a convergence proof for this algorithm for the one-dimensional case, and provide a precise geometric formulation of geodesic deviation which relates the stability of the motion in the geometric form to that of the Hamiltonian standard form. We apply our methods to a simple one-dimensional harmonic oscillator and conclude with a discussion of the relation of bounded domains in the two representations for which Morse theory would be applicable.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference20 articles.

1. Geometry of Hamiltonian Chaos

2. Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics;Pettini,2007

3. Mathematical Methods of Classical Mechanics;Arnold,1978

4. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields;Guckenheimer,1983

5. Classical Mechanics, Theory and Mathematical Modelling;DiBenedetto,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3