HCDA: Efficient Pairing-Free Homographic Key Management for Dynamic Cross-Domain Authentication in VANETs

Author:

Tan HaowenORCID,Xuan ShichangORCID,Chung IlyongORCID

Abstract

Emerging as the effective strategy of intelligent transportation system (ITS), vehicular ad hoc networks (VANETs) have the capacity of drastically improving the driving experience and road safety. In typical VANET scenarios, high mobility and volatility of vehicles result in dynamic topology of vehicular networks. That is, individual vehicle may pass through the effective domain of multiple neighboring road-side-units (RSUs) during a comparatively short time interval. Hence, efficient and low-latency cross-domain verification with all the successive RSUs is of significance. Recently, a lot of research on VANET authentication and key distribution was presented, while the critical cross-domain authentication (CDA) issue has not been properly addressed. Particularly, the existing CDA solutions mainly reply on the acquired confidential keying information from the neighboring entities (RSUs and vehicles), while too much trustworthiness is granted to the involved RSUs. Please note that the RSUs are distributively located and may be compromised or disabled by adversary, thus vital vehicle information may be revealed. Furthermore, frequent data interactions between RSUs and cloud server are always the major requisite so as to achieve mutual authentication with cross-domain vehicles, which leads to heavy bandwidth consumption and high latency. In this paper, we address the above VANET cross-domain authentication issue under the novel RSU edge networks assumption. Please note that RSUs are assumed to be semi-trustworthy entity in our design, where critical vehicular keying messages remain secrecy. Homomorphic encryption design is applied for all involved RSUs and vehicles. In this way, successive RSUs could efficiently verify the cross-domain vehicle with the transited certificate from the neighbor RSUs and vehicle itself, while the identity and secrets of each vehicle is hidden all the time. Afterwards, dynamic updating towards the anonymous vehicle identity is conducted upon validation, where conditional privacy preserving is available. Moreover, pairing-free mutual authentication method is used for efficiency consideration. Formal security analysis is given, proving that the HCDA mechanism yields desirable security properties on VANET cross domain authentication issue. Performance discussions demonstrate efficiency of the proposed HCDA scheme compared with the state-of-the-art.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3