A Feature Selection Model for Network Intrusion Detection System Based on PSO, GWO, FFA and GA Algorithms

Author:

Almomani OmarORCID

Abstract

The network intrusion detection system (NIDS) aims to identify virulent action in a network. It aims to do that through investigating the traffic network behavior. The approaches of data mining and machine learning (ML) are extensively used in the NIDS to discover anomalies. Regarding feature selection, it plays a significant role in improving the performance of NIDSs. That is because anomaly detection employs a great number of features that require much time. Therefore, the feature selection approach affects the time needed to investigate the traffic behavior and improve the accuracy level. The researcher of the present study aimed to propose a feature selection model for NIDSs. This model is based on the particle swarm optimization (PSO), grey wolf optimizer (GWO), firefly optimization (FFA) and genetic algorithm (GA). The proposed model aims at improving the performance of NIDSs. The proposed model deploys wrapper-based methods with the GA, PSO, GWO and FFA algorithms for selecting features using Anaconda Python Open Source, and deploys filtering-based methods for the mutual information (MI) of the GA, PSO, GWO and FFA algorithms that produced 13 sets of rules. The features derived from the proposed model are evaluated based on the support vector machine (SVM) and J48 ML classifiers and the UNSW-NB15 dataset. Based on the experiment, Rule 13 (R13) reduces the features into 30 features. Rule 12 (R12) reduces the features into 13 features. Rule 13 and Rule 12 offer the best results in terms of F-measure, accuracy and sensitivity. The genetic algorithm (GA) shows good results in terms of True Positive Rate (TPR) and False Negative Rate (FNR). As for Rules 11, 9 and 8, they show good results in terms of False Positive Rate (FPR), while PSO shows good results in terms of precision and True Negative Rate (TNR). It was found that the intrusion detection system with fewer features will increase accuracy. The proposed feature selection model for NIDS is rule-based pattern recognition to discover computer network attack which is in the scope of Symmetry journal.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference44 articles.

1. A Review of Intrusion Detection System Using Neural Network and Machine Learning;Vinchurkar;J. Eng. Sci. Innov. Technol.,2012

2. Survey on Intrusion Detection System Types;Othman;Int. J. Cyber Secur. Digit. Forensics,2018

3. A survey of intrusion detection in Internet of Things

4. A survey of deep learning-based network anomaly detection

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3