A New Objective Function for the Recovery of Gielis Curves

Author:

Arce Alejandro Marcelo,Caroni Gabriel Giovanni,Vázquez Noguera José LuisORCID,Pinto-Roa Diego P.ORCID,Legal-Ayala HoracioORCID,Grillo Sebastián A.

Abstract

The superformula generates curves called Gielis curves, which depend on a small number of input parameters. Recovering parameters generating a curve that adapts to a set of points is a non-trivial task, thus methods to accomplish it are still being developed. These curves can represent a great variety of forms, such as living organisms, objects and geometric shapes. In this work we propose a method that uses a genetic algorithm to minimize a combination of three objectives functions: Euclidean distances from the sample points to the curve, from the curve to the sample points and the curve length. Curves generated with the parameters obtained by this method adjust better to real curves in relation to the state of art, according to observational and numeric comparisons.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3