Genomic Prediction for Grain Yield and Yield-Related Traits in Chinese Winter Wheat

Author:

Ali Mohsin,Zhang Yong,Rasheed AwaisORCID,Wang Jiankang,Zhang LuyanORCID

Abstract

Genomic selection (GS) is a strategy to predict the genetic merits of individuals using genome-wide markers. However, GS prediction accuracy is affected by many factors, including missing rate and minor allele frequency (MAF) of genotypic data, GS models, trait features, etc. In this study, we used one wheat population to investigate prediction accuracies of various GS models on yield and yield-related traits from various quality control (QC) scenarios, missing genotype imputation, and genome-wide association studies (GWAS)-derived markers. Missing rate and MAF of single nucleotide polymorphism (SNP) markers were two major factors in QC. Five missing rate levels (0%, 20%, 40%, 60%, and 80%) and three MAF levels (0%, 5%, and 10%) were considered and the five-fold cross validation was used to estimate the prediction accuracy. The results indicated that a moderate missing rate level (20% to 40%) and MAF (5%) threshold provided better prediction accuracy. Under this QC scenario, prediction accuracies were further calculated for imputed and GWAS-derived markers. It was observed that the accuracies of the six traits were related to their heritability and genetic architecture, as well as the GS prediction model. Moore–Penrose generalized inverse (GenInv), ridge regression (RidgeReg), and random forest (RForest) resulted in higher prediction accuracies than other GS models across traits. Imputation of missing genotypic data had marginal effect on prediction accuracy, while GWAS-derived markers improved the prediction accuracy in most cases. These results demonstrate that QC on missing rate and MAF had positive impact on the predictability of GS models. We failed to identify one single combination of QC scenarios that could outperform the others for all traits and GS models. However, the balance between marker number and marker quality is important for the deployment of GS in wheat breeding. GWAS is able to select markers which are mostly related to traits, and therefore can be used to improve the prediction accuracy of GS.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference48 articles.

1. FAO FAOSTAThttp://www.fao.org/faostat/en/#data/QC

2. Accelerating crop genetic gains with genomic selection

3. Breeding schemes for the implementation of genomic selection in wheat ( Triticum spp . )

4. Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives

5. Prediction of total genetic value using genome-wide dense marker maps;Meuwissen;Genetics,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3