EMT Transcription Factors Are Involved in the Altered Cell Adhesion under Simulated Microgravity Effect or Overloading by Regulation of E-cadherin

Author:

Shi Shuliang,Li Qiao,Cao Qiuying,Diao Yan,Zhang Yao,Yue Lei,Wei Lijun

Abstract

In order to study the effect of stress changes on cell adhesion, HUVEC, and MCF-7 cells were treated with simulated microgravity effect (SMG) and overloading (OL). Methods: Rotating Wall Vessel (2D-RWVS) bioreactor was used to create different culture conditions. In addition, the alteration of cell adhesion states, adhesion proteins, and relating factors of adhesion molecules under these two conditions were detected using cell adhesion assay, immunofluorescence, western blot, and qRT-PCR technology. Results: The results showed that the adhesion of cells decreased under SMG, while increased under OL. The expressions of integrin β1, paxillin, and E-cadherin under SMG condition were down-regulated as compared to that of the control group showing a time-dependent pattern of the decreasing. However, under OL condition, the expressions of adhesion proteins were up-regulated as compared to that of the control group, with a time-dependent pattern of increasing. EMT transcription factors Snail, twist, and ZEB1 were up-regulated under SMG while down-regulated under OL. Conclusion: Collectively our results indicated that cells could respond to stress changes to regulate the expressions of adhesion proteins and adapt their adhesion state to the altered mechanical environment. The altered cell adhesion in response to the mechanical stress may involve the changed expression of EMT-inducing factors, Snail, Twist, and ZEB1under the SMG/OL conditions.

Funder

Key Laboratory of Space Medicine Fundamentals and Application

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference38 articles.

1. Human bone system in microgravity: Review of research data, hypotheses and predictability of musculoskeletal system state in extended (exploration) missions;Oganov;Aviakosm Ekolog Med.,2009

2. Gravity in the Brain as a Reference for Space and Time Perception

3. Bioastronautics: The Influence of Microgravity on Astronaut Health

4. Responses across the gravity continuum: Hypergravity to microgravity;Wade;Adv. Space Biol. Med.,2005

5. Effects of simulated weightlessness and overweight on the growth of osteoblast cultured in vitro;Ding;Space Med. Med. Eng. (Beijing),1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3