Cobalt Oxide-Decorated on Carbon Derived from Onion Skin Biomass for Li-Ion Storage Application

Author:

Liu Yunan12,Sun Ting2,Ege Duygu3ORCID,Kamali Ali Reza1ORCID

Affiliation:

1. School of Metallurgy, Northeastern University, Shenyang 110819, China

2. College of Science, Northeastern University, Shenyang 110819, China

3. Institute of Biomedical Engineering, BoğaziçI University, 34684 Istanbul, Turkey

Abstract

Onion waste, particularly onion skin, is a widely generated waste material, and harnessing its potential for energy storage aligns with sustainable development goals. Despite the high specific surface area exhibited by biocarbon derived from onion skin, its Li-ion storage performance is not desirable. In this study, biocarbon derived from purple onion skin serves as the substrate for accommodating cobalt oxide (Co3O4) through a hydrothermal method, employing Co(NO3)2·6H2O at various concentrations, and with and without prior activation using KOH treatment. The resulting samples undergo comprehensive analyses, including phase, morphological, surface, and electrochemical characterizations. The Co3O4 decoration on activated carbon derived from onion skin, synthesized using Co(NO3)2·6H2O at a concentration of 1 M, reveals a porous structure with a surface area of 702 m2/g, featuring predominant pore sizes of less than 5 nm. Significantly, the Li-ion storage performance of this sample surpasses that of alternative samples, demonstrating a remarkable reversible capacity of 451 mAh/g even after 500 cycles at an elevated current density of 2000 mAh/g. The charge transfer resistance of the sample (110.3 Ω) is found to be substantially lower than that of the sample prepared using carbonized onion skin biomass without activation. This research introduces an innovative approach leveraging onion skin waste as a template for Co3O4 decoration, thereby fabricating high-performance anodes for lithium-ion batteries.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3