Affiliation:
1. Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
2. Department of Energy Storage/Conversion Engineering of Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
Abstract
This study explores a super-fast magnetic abrasive finishing (MAF) process for polishing the surface of an Inconel 625 bar workpiece for a hydrogen solenoid valve stem. The Inconel 625 bar was chosen to replace the existing STS 316 bar material, previously used for a hydrogen solenoid valve stem. The cylindrical surface of Inconel 625 bars was polished by a super-fast MAF process with high rotational speeds of 1000, 5000, 15,000, and 25,000 RPM and a super-strong magnetic field of 550 mT. The polishing characteristics of this process were evaluated according to the type of abrasives, rotational speeds of the workpiece and processing time. As a result, a super-smooth Inconel 625 bar was successfully achieved, with a surface roughness (Ra) reduced from 0.31 μm to 0.02 μm under the optimal conditions (15,000 RPM, CNT particles (0.04 μm), PCD diamond abrasive (1 μm), Fe (#200), 0.5 g of light oil, and 16 min of processing time). Also, the Ansys analysis results showed suitable strain, equivalent stress, and safety factor of the Inconel 625 bar. This confirmed that, after a super-fast MAF process, an Inconel 625 bar is feasible for application in Hydrogen (H2) tanks instead of a conventional STS 316 bar.
Funder
National Research Foundation of Korea