Investigation on the Corrosion Resistance of 3003 Aluminum Alloy in Acidic Salt Spray under Different Processing States

Author:

Lu Qiang1,Zhao Yuchao1,Wang Qudong1ORCID,Li Dezhi2ORCID

Affiliation:

1. National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, UK

Abstract

3003 aluminum alloy exhibits commendable corrosion resistance, ease of processing, and good formability, rendering it extensively utilized across many industrial sectors. In this study, the corrosion behavior of 3003 aluminum alloy in a homogenized state and after hot extrusion deformation in an acidic salt spray environment for different times was studied. The microstructure of the 3003 aluminum alloy in the homogenized state and after hot extrusion was characterized using scanning electron microscopy (SEM), optical microscope (OM), laser scanning confocal microscope (LSCM) etc., while electrochemical methods were employed to study the difference in corrosion resistance between these two states. The results show that corrosion pits on the surface of the homogenized 3003 aluminum alloy increase with time, and corrosion extends along the second phase arrangement, while the hot extruded 3003 aluminum alloy mainly exhibits corrosion pit extension. The grain size of the homogenized 3003 aluminum alloy is larger than that of the hot extruded state, and the second phase is distributed in a reticular pattern. Hot extrusion deformation ensures not only a uniform distribution of the second phase in the 3003 aluminum alloy but also a reduced grain size, an increased grain boundary density, a heightened electrochemical activity in acidic environments, and an augmented pitting density. Compared with the homogenized 3003 aluminum alloy, the pitting density, maximum pitting depth, and weight loss of the hot extruded state are increased.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

SJTU-Warwick Joint Seed Fund

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3