Effects of Fe Contents on the Microstructure and Precipitate of Ti–Al–V Alloys Prepared by Direct Energy Deposition

Author:

He Zijian1,Yang Wanwan2,Liu Cheng2,Wei Xiao23,Wang Jiangwei13ORCID

Affiliation:

1. Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

2. Institute of Superalloys Science and Technology, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

3. State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

This study investigated the influence of Fe content on the microstructure and mechanical properties of Ti–6Al–4V(TC4) + 25Ti alloys prepared by low-energy-density direct energy deposition (DED) technology. With the incorporation of the Fe elements, the α-Ti phases exhibited significant changes in size and morphology, while the numerous β-Ti phases and some triclinic-Ti precipitates were retained. With the refinement of the α-Ti phase, retainment of the β-Ti phase and the presence of triclinic-Ti precipitates, the mechanical properties of DED samples can be significantly improved compared with DED TC4 alloys. The room-temperature mechanical property tests showed that the ultimate tensile strength (UTS) of 3Fe + TC4 + 25Ti achieved 1298.64 ± 5.26 MPa with an elongation of 4.82% ± 0.20%, and the maximum elongation of 1Fe + TC4 + 25Ti reached 10.82% ± 0.82% with a UTS of 1076.95 ± 11.69 MPa. The strengthening mechanism of DED Ti-Al-V-Fe alloys were further discussed, providing new insights into the microstructure control and the composition design of additive manufacturing of Ti alloys.

Funder

National Key R&D Program of China

Innovation Fund of the Zhejiang Kechuang New Materials Research Institute

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3