A Constitutive Model for Asymmetric Cyclic Hysteresis of Wrought Magnesium Alloys under Variable Amplitude Loading

Author:

Behravesh Seyed Behzad1,Lambert Stephan1,Jahed Hamid1ORCID

Affiliation:

1. Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, ON N2L-3G1, Canada

Abstract

A cyclic plasticity constitutive model was developed for materials with asymmetric cyclic behavior to explain the stabilized stress–strain response under variable amplitude loading. The proposed constitutive model incorporated the von Mises yield function with an adjustment to accommodate asymmetric yielding under tension and compression. A combined isotropic–kinematic hardening model was proposed to describe the evolution of the yield surface in the reference uniaxial frame and the actual frame. The history of plastic deformation is memorized by introducing internal variables, accumulated slip, and residual twins, which govern the cyclic flow behavior in the subsequent reversal. The additional conditions required to predict the stabilized hysteresis response of a material under variable amplitude loading were set out and incorporated into the constitutive model. The model was numerically implemented and programmed into a user material (UMAT) subroutine to run with the commercial finite element program, Abaqus/Standard 2019. The model was calibrated using the stabilized hysteresis response of ZEK100 and AZ31B sheets under constant amplitude strain-controlled cyclic loading for different strain amplitudes. To verify the model, constant amplitude and four different variable amplitude load spectra tests were performed and the stabilized stress–strain hysteresis response predicted by the model was compared with test results. It was demonstrated that the results are in very good agreement.

Funder

NSERC Automotive Partnership Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3