Affiliation:
1. SINTEF Manufacturing AS, 2830 Raufoss, Norway
2. SINTEF Industry, 7465 Trondheim, Norway
Abstract
In the aluminum industry, forming is an important process step that introduces dislocations in the material. To investigate the effect of dislocation retention after ageing on 6xxx-series alloys, a non-heat-treatable 5005 alloy was selected to measure the change in mechanical properties due to dislocation annihilation during dynamic recovery. However, the isothermal ageing treatment led to an unexpected and significant increase in mechanical properties after deformation. Increases in yield strength of 120% and tensile strength of 50% compared with the as-received material were achieved. However, this caused a significant decrease in elongation properties. The deformation start temperature did not have any impact on the final mechanical properties. TEM analysis attributed the increase in mechanical properties to an increased precipitation and dislocation density compared with the undeformed reference material. The precipitates are located along dislocation lines, showing that the solute elements are preferentially segregating to dislocations and precipitating. The precipitates were typical for the Al–Mg–Si(–Cu) system; therefore, the low amounts of Si and, to a lesser extent, Cu were responsible for the precipitation hardening in the 5005 alloy.
Reference33 articles.
1. A review on forming techniques for manufacturing lightweight complex—Shaped aluminium panel components;Zheng;Int. J. Lightweight Mater. Manuf.,2018
2. Effect of sensitization heat treatment on properties of Al–Mg alloy AA5083-H116;Oguocha;J. Mater. Sci.,2008
3. Processing and Precipitation Strengthening of 6xxx Series Aluminium Alloys: A Review;Baruah;Int. J. Mater. Sci.,2020
4. Over-ageing of an Al-Mg-Si alloy with silicon excess;Meyruey;Mater. Sci. Eng. A,2018
5. The influence of alloy composition on precipitates of the Al-Mg-Si system;Marioara;Metall. Mater. Trans. A,2005
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献