Cold Rolling Technology Optimization for EN AW 4343/3003/4343 Cladded Aluminum Alloys and Influence of Parameters on Microstructure, Mechanical Properties and Sustainable Recyclability

Author:

Kropf Bojan123,Cvahte Peter14,Arzenšek Matija13,Kraner Jakob134ORCID

Affiliation:

1. Impol Aluminium Industry, Partizanska 38, SI-2310 Slovenska Bistrica, Slovenia

2. Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia

3. Department of Materials and Metallurgy, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, SI-1000 Ljubljana, Slovenia

4. Institute of Metals and Technology, Lepi pot 11, SI-1000 Ljubljana, Slovenia

Abstract

The present study investigates the accumulative roll bonding process applied to the EN AW 3003 aluminum alloy, serving as a composite material on both sides and consisting of the EN AW 4343 aluminum alloy. For the characterization of the optical microscopy, corrosion tests with saltwater acetic acid and mechanical properties before and after the braze test were employed. The numerical simulations accurately predicted the industrial cold rolling values for the rolling force and surface temperature. The most comprehensive understanding of the cold rolling parameters for both side-cladded materials was achieved by combining predictions for cladded and uncladded materials. The thickness of the cladded layer presented as a percentage after roll bonding was 18.7%. During the cold rolling and annealing, the cladded thickness was increased to 24.7% of the final 0.3 mm of the total cold-rolled product thickness. According to the performed braze test for final thickness, the ultimate tensile strength and yield strength were decreased, and the elongation increased to 18.1%. In addition to the described changes in mechanical properties, the material’s anisotropy improved from 5.4% in the cold-rolled condition to 2.0% after the braze test. After multiple re-meltings of the cladded material, the analyzed chemical compositions allow for recycling and reuse as different 4xxx, 5xxx, and 6xxx alloys.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3