A First-Time Investigation into Ecofriendly and Biocompatible Mg-Se Binary System for a Greener Earth

Author:

Johanes Michael1ORCID,Sonawane Vasuudhaa1,Gupta Manoj1ORCID

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore

Abstract

In this study, the Mg-15Se binary system was, for the first time, investigated and synthesized using the powder metallurgy (PM) method, including microwave sintering and hot extrusion. The resulting material was shown to possess visible pores with a porosity of 2.91%, higher than other Mg materials synthesized using this method in the literature. Despite this, the material not only exhibited a comparable corrosion response with pure Mg but also a significantly superior mechanical response (76% greater damping capacity, 57% increase in hardness, and increases of 21%, 50%, and 51% for compressive yield strength, ultimate compressive strength, and fracture strain, respectively). Thus, this not only opens the door for future work concerning the addition of medicinal Se to nutritional Mg element and the optimization of process parameters but also could potentially be making inroads into the biomedical field with the use of selenium as a biomedical-oriented alloying element.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3