The Direct Alloying of Steel through Silicothermic Self-Reduction of Chromite Ore Utilizing Si-Containing Solid Waste

Author:

Chen Yiliang12,Xue Zhengliang12,Song Shengqiang12ORCID

Affiliation:

1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China

2. Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

Organosilicon materials generate copious amounts of Si-containing solid waste during production, leading to severe environmental pollution and substantial resource squandering. In pursuit of the resource utilization of Si-containing solid waste, this study conducted experimental research on the direct alloying of molten steel through the silicothermic self-reduction of chromite ore using Si-containing solid waste as a reducing agent. Additionally, thermodynamic analysis was performed, employing the thermodynamic calculation software FactSage 8.2 (Thermfact Ltd., Montreal, QC, Canada and GTT-Technologies, Aachen, Germany), to examine the equilibrium reactions of the silicothermic reduction of chromite ore and the variations in the thermodynamic equilibrium compositions of slag and metal phases. The results indicate a reduction sequence for the reducible components in chromite ore as Fe2O3 → Cr2O3. The introduction of CaO and Al2O3 into the silicothermic self-reduction compacts altered the forms of Fe and Cr oxides in equilibrium, significantly reducing the standard Gibbs free energy (ΔG0) of the silicothermic reduction reaction. The initial slag melting point decreased from 1700 °C without the addition of CaO and Al2O3 to 1500 °C with the addition of CaO and Al2O3. Correspondingly, the slag viscosity at 1600 °C decreased from 134.1 Pa·s without CaO and Al2O3 addition to 1.81 Pa·s with CaO and Al2O3 addition. The addition of CaO and Al2O3 accelerated the reduction of Cr oxide in chromite ore and enhanced the recovery of Cr, consistent with the thermodynamic calculation results. In the process of steelmaking through the direct alloying of chromite ore silicothermic self-reduction compacts, the final recovery rate of Cr increased from 86.4% without CaO and Al2O3 addition to 95.4% with CaO and Al2O3 addition.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3