Abstract
Tracking problems, including unknown number of targets, target trajectories behaviour and uncertain motion of targets in the surveillance region, are challenging issues. It is also difficult to estimate cross-over targets in heavy clutter density environment. In addition, tracking algorithms including smoothers which use measurements from upcoming scans to estimate the targets are often unsuccessful in tracking due to low detection probabilities. For efficient and better tracking performance, the smoother must rely on backward tracking to fetch measurement from future scans to estimate forward track in the current time. This novel idea is utilized in the joint integrated track splitting (JITS) filter to develop a new fixed-interval smoothing JITS (FIsJITS) algorithm for tracking multiple cross-over targets. The FIsJITS initializes tracks employing JITS in two-way directions: Forward-time moving JITS (fJITS) and backward-time moving JITS (bJITS). The fJITS acquires the bJITS predictions when they arrive from future scans to the current scan for smoothing. As a result, the smoothing multi-target data association probabilities are obtained for computing the fJITS and smoothing output estimates. This significantly improves estimation accuracy for multiple cross-over targets in heavy clutter. To verify this, numerical assessments of the FIsJITS are tested and compared with existing algorithms using simulations.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献