A Note on Gerber–Shiu Function with Delayed Claim Reporting under Constant Force of Interest

Author:

Essiomle KokouORCID,Adekambi FranckORCID

Abstract

In this paper, we analyze the Gerber–Shiu discounted penalty function for a constant interest rate in delayed claim reporting times. Using the Poisson claim arrival scenario, we derive the differential equation of the Laplace transform of the generalized Gerber–Shiu function and show that the differential equation can be transformed to a Volterra equation of the second kind with a degenerated kernel. In the case of an exponential claim distribution, a closed-expression for the Gerber–Shiu function is obtained via sequence expansion. This result allows us to calculate the absolute (relative) ruin probability. Additionally, we discuss a method of solving the Volterra equation numerically and provide an illustration of the ruin’s probability to support the finding.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Reference21 articles.

1. Framställning av Sannolikehetsfunktionen;Lundberg,1903

2. On the mathematical theory of risk;Cramér,1930

3. Probability of Ruin under Inflationary Conditions or under Experience Rating

4. On the Time Value of Ruin

5. On the time value of absolute ruin with debit interest

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Gerber-Shiu discounted penalty function: A review from practical perspectives;Insurance: Mathematics and Economics;2023-03

2. Preface to Computational Mathematics and Applied Statistics;Mathematical and Computational Applications;2023-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3