Interval-Based Computation of the Uncertainty in the Mechanical Properties and the Failure Analysis of Unidirectional Composite Materials

Author:

Sotiropoulos Dimitris G.ORCID,Tserpes KonstantinosORCID

Abstract

An interval-based method is presented to evaluate the uncertainty in the computed mechanical properties and the failure assessment of composite unidirectional (UD) laminates. The method was applied to two composite laminates: a carbon/epoxy and a glass/epoxy. The mechanical properties of the UD lamina were derived using simplified micromechanical equations. An uncertainty level of ±5% was assumed for the input properties of the constituents. The global minimum and maximum values of the properties were computed using an interval branch-and-bound algorithm. Interval arithmetic operations were used to evaluate the uncertainty in the Hashin-type failure criteria in a closed form. Using the closed-form uncertainties of intervals and sets of stresses obtained by finite element analysis, the uncertainty in the failure assessment was quantified for the two composite laminates. For the assumed uncertainty level of ±5%, the computed uncertainty for the mechanical properties ranges from 6.64% to 10.63% for the carbon/epoxy material and from 6.72% to 12.28% for the glass/epoxy material. For evaluating the uncertainty effect on the efficiency of failure criteria, a probability of failure function, which employs interval boundaries, was defined and proved capable of evaluating the whole spectrum of stresses.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Reference28 articles.

1. Revolutionizing Aircraft Materials and Processes,2020

2. Failure Criteria in Fibre-Reinforced-Polymer Composites;Hinton,2004

3. Failure Criteria for Unidirectional Fiber Composites

4. A three-dimensional progressive damage model for bolted joints in composite laminates subjected to tensile loading

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3