Abstract
This article aims to develop a mathematical simulation of the steady mixed convective Darcy–Forchheimer flow of Williamson nanofluid over a linear stretchable surface. In addition, the effects of Cattaneo–Christov heat and mass flux, Brownian motion, activation energy, and thermophoresis are also studied. The novel aspect of this study is that it incorporates thermal radiation to investigate the physical effects of thermal and solutal stratification on mixed convection flow and heat transfer. First, the profiles of velocity and energy equations were transformed toward the ordinary differential equation using the appropriate similarity transformation. Then, the system of equations was modified by first-order ODEs in MATLAB and solved using the bvp4c approach. Graphs and tables imply the impact of physical parameters on concentration, temperature, velocity, skin friction coefficient, mass, and heat transfer rate. The outcomes show that the nanofluid temperature and concentration are reduced with the more significant thermal and mass stratification parameters estimation.
Subject
Applied Mathematics,Computational Mathematics,General Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献