A Dynamic Simulation Model for Understanding Sustainability of Machining Operation

Author:

Moran Tess,MacDonald Rod,Zhang Hao

Abstract

The environmental impact of machining operations such as milling, drilling, and turning, is often treated as a conflicting interest when compared to other machining factors such as cost, quality, time, and process settings. It is more beneficial in the long-term for the manufacturer to adjust their practices to be more environmentally conscious. Currently, there are limited existing research showing the linkages between environmental impact of machining and other machining factors. The objective of this study is to create a systems model to examine the linkages of environmental impact with cutting conditions, cost, quality, and efficiency. The model aims to replicate the machining behaviors at the unit process level and generate the long-term implications of their techniques and impacts for engineering decision making. A case study was conducted on a CNC machining operation to create injection molds for climbing holds. The model simulates tool wear and replacement, cutting, energy, cost, and surface quality. The result of this study contributes to the manufacturing knowledge by creating a systems model to quantify and better understand the linkages and trade-offs between environmental impact and decisions surrounding machining operation parameters and technologies. The self-governing behavior of the dynamic model can also be used as a decision-making tool for smart machining control.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3