Verification of the Interaction Target Protein of the Effector ApCE22 of Arthrinium phaeospermum in Bambusa pervariabilis × Dendrocalamopsis grandis

Author:

Fang Xinmei12,Yan Peng1,Owusu Adjei Mark1,Zhu Tianhui1,Li Shujiang13ORCID

Affiliation:

1. College of Forestry, Sichuan Agricultural University, Chengdu 611130, China

2. College of Life Sciences, Neijiang Normal University, Neijiang 641100, China

3. National Forestry and Grassland Administration, Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China

Abstract

The study of interaction proteins of the pathogen A. phaeospermum effector protein is an important means to analyze the disease-resistance mechanism of Bambusa pervariabilis × Dendrocalamopsis grandis shoot blight. To obtain the proteins interacting with the effector ApCE22 of A. phaeospermum, 27 proteins interacting with the effector ApCE22 were initially identified via a yeast two-hybrid assay, of which four interaction proteins were obtained after one-to-one validation. The B2 protein and the chaperone protein DnaJ chloroplast protein were then verified to interact with the ApCE22 effector protein by bimolecular fluorescence complementation and GST pull-down methods. Advanced structure prediction showed that the B2 protein contained the DCD functional domain related to plant development and cell death, and the DnaJ protein contained the DnaJ domain related to stress resistance. The results showed that both the B2 protein and DnaJ protein in B. pervariabilis × D. grandis were the target interaction proteins of the ApCE22 effector of A. phaeospermum and related to the stress resistance of the host B. pervariabilis × D. grandis. The successful identification of the pathogen effector interaction target protein in B. pervariabilis × D. grandis plays an important role in the mechanism of pathogen–host interaction, thus providing a theoretical basis for the control of B. pervariabilis × D. grandis shoot blight.

Funder

the National Natural Science Foundation of China

the Sichuan Natural Science Foundation for Distinguished Young Scholar

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3