Regulation of Epithelial Sodium Transport by SARS-CoV-2 Is Closely Related with Fibrinolytic System-Associated Proteins

Author:

Wang Tingyu1,Zhai Yiman1ORCID,Xue Hao1,Zhou Wei1,Ding Yan1,Nie Hongguang1ORCID

Affiliation:

1. Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China

Abstract

Dyspnea and progressive hypoxemia are the main clinical features of patients with coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pulmonary pathology shows diffuse alveolar damage with edema, hemorrhage, and the deposition of fibrinogens in the alveolar space, which are consistent with the Berlin Acute Respiratory Distress Syndrome Criteria. The epithelial sodium channel (ENaC) is a key channel protein in alveolar ion transport and the rate-limiting step for pulmonary edema fluid clearance, the dysregulation of which is associated with acute lung injury/acute respiratory distress syndrome. The main protein of the fibrinolysis system, plasmin, can bind to the furin site of γ-ENaC and induce it to an activation state, facilitating pulmonary fluid reabsorption. Intriguingly, the unique feature of SARS-CoV-2 from other β-coronaviruses is that the spike protein of the former has the same furin site (RRAR) with ENaC, suggesting that a potential competition exists between SARS-CoV-2 and ENaC for the cleavage by plasmin. Extensive pulmonary microthrombosis caused by disorders of the coagulation and fibrinolysis system has also been seen in COVID-19 patients. To some extent, high plasmin (ogen) is a common risk factor for SARS-CoV-2 infection since an increased cleavage by plasmin accelerates virus invasion. This review elaborates on the closely related relationship between SARS-CoV-2 and ENaC for fibrinolysis system-related proteins, aiming to clarify the regulation of ENaC under SARS-CoV-2 infection and provide a novel reference for the treatment of COVID-19 from the view of sodium transport regulation in the lung epithelium.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3