A Network Intrusion Detection Method Incorporating Bayesian Attack Graph and Incremental Learning Part

Author:

Wu Kongpei1,Qu Huiqin1,Huang Conggui1

Affiliation:

1. School of Control Technology, Wuxi Institute of Technology, Wuxi 214121, China

Abstract

For the current stage of complex and changing network environments and correlated and synchronized vulnerability attacks, this study first fuses attack graph technology and Bayesian networks and constructs Bayesian attack graphs toportray the correlation relationships between vulnerabilities and discovering attackers’ intentions. Meanwhile, improving the Bayesian attack graph is difficult because it is difficult to achieve active updates and adapt to the changing network environment and other problems. The study proposed a detection method that integrated the Bayesian attack graph and the XGBoost incremental learning (IL) approach. Experiments showed that the IL model had an accuracy of 0.951, an accuracy of 0.999, a recall of 0.815, an F1 value of 0.898, and an Area Under Curve (AUC) value of 0.907. The prediction ability of this method was better than that of the base model. Bayesian attack graphs fused with IL can detect attacks in the network more efficiently and accurately, so the probability of each node in the network system being attacked can be updated in real time.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3