Affiliation:
1. School of Control Technology, Wuxi Institute of Technology, Wuxi 214121, China
Abstract
For the current stage of complex and changing network environments and correlated and synchronized vulnerability attacks, this study first fuses attack graph technology and Bayesian networks and constructs Bayesian attack graphs toportray the correlation relationships between vulnerabilities and discovering attackers’ intentions. Meanwhile, improving the Bayesian attack graph is difficult because it is difficult to achieve active updates and adapt to the changing network environment and other problems. The study proposed a detection method that integrated the Bayesian attack graph and the XGBoost incremental learning (IL) approach. Experiments showed that the IL model had an accuracy of 0.951, an accuracy of 0.999, a recall of 0.815, an F1 value of 0.898, and an Area Under Curve (AUC) value of 0.907. The prediction ability of this method was better than that of the base model. Bayesian attack graphs fused with IL can detect attacks in the network more efficiently and accurately, so the probability of each node in the network system being attacked can be updated in real time.
Subject
Computer Networks and Communications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献