Transforming IoT Events to Meaningful Business Events on the Edge: Implementation for Smart Farming Application

Author:

Gkoulis Dimitris1ORCID,Bardaki Cleopatra1ORCID,Kousiouris George1ORCID,Nikolaidou Mara1ORCID

Affiliation:

1. Department of Informatics and Telematics, Harokopio University of Athens, 17778 Athens, Greece

Abstract

This paper focuses on Internet of Things (IoT) architectures and knowledge generation out of streams of events as the primary elements concerning the creation of user-centric IoT services. We provide a general, symmetrical IoT architecture, which enables two-way bidirectional communication between things and users within an application domain. We focus on two main components of the architecture (i.e., Event Engine and Process Engine) that handle event transformation by implementing parametric Complex Event Processing (CEP). More specifically, we describe and implement the transformation cycle of events starting from raw IoT data to their processing and transformation of events for calculating information that we need in an IoT-enabled application context. The implementation includes a library of composite transformations grouping the gradual and sequential steps for transforming basic IoT events into business events, which include ingestion, event splitting, and calculation of measurements’ average value. The appropriateness and possibility of inclusion and integration of the implementation in an IoT environment are demonstrated by providing our implementation for a smart farming application domain with four scenarios that each reflect a user’s requirements. Further, we discuss the quality properties of each scenario. Ultimately, we propose an IoT architecture and, specifically, a parametric CEP model and implementation for future researchers and practitioners who aspire to build IoT applications.

Funder

European Union’s Project H2020 PHYSICS

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference52 articles.

1. Enabling the Internet of Things;Want;Computer,2015

2. Chen, Y.K. (February, January 30). Challenges and opportunities of internet of things. Proceedings of the 17th Asia and South Pacific Design Automation Conference, Sydney, Australia.

3. The internet of things: A survey;Atzori;Comput. Netw.,2010

4. That ‘internet of things’ thing;Ashton;RFID J.,2009

5. The internet of things: A survey;Li;Inf. Syst. Front.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3