Adsorption of Nitrogen Dioxide on Nitrogen-Enriched Activated Carbons

Author:

Bazan-Wozniak Aleksandra1ORCID,Nosal-Wiercińska Agnieszka2,Cielecka-Piontek Judyta3ORCID,Yilmaz Selehattin4ORCID,Pietrzak Robert1

Affiliation:

1. Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland

2. Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska 3, 20-031 Lublin, Poland

3. Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland

4. Department of Chemistry-Analytical Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey

Abstract

The aim of this study was to obtain nitrogen-enriched activated carbons from orthocoking coal. The initial material was subjected to a demineralisation process. The demineralised precursor was pyrolysed at 500 °C and then activated with sodium hydroxide at 800 °C. Activated carbon adsorbents were subjected to the process of ammoxidation using a mixture of ammonia and air at two different temperature variants (300 and 350 °C). Nitrogen introduction was carried out on stages of demineralised precursor, pyrolysis product, and oxidising activator. The elemental composition, acid-base properties, and textural parameters of the obtained carbon adsorbents were determined. The activated carbons were investigated for their ability to remove nitrogen dioxide. The results demonstrated that the ammoxidation process incorporates new nitrogen-based functional groups into the activated carbon structure. Simultaneously, the ammoxidation process modified the acid-base characteristics of the surface and negatively affected the textural parameters of the resulting adsorbents. Furthermore, the study showed that all of the obtained carbon adsorbents exhibited a distinct microporous texture. Adsorption tests were carried out against NO2 and showed that the carbon adsorbents obtained were highly effective in removing this gaseous pollutant. The best sorption capacity towards NO2 was 23.5 mg/g under dry conditions and 75.0 mg/g under wet conditions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3