Identification of AURKA as a Biomarker Associated with Cuproptosis and Ferroptosis in HNSCC

Author:

Jia Xiao123ORCID,Tian Jiao1,Fu Yueyue1,Wang Yiqi1,Yang Yang1,Zhang Mengzhou23,Yang Cheng1,Liu Yijin1

Affiliation:

1. State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China

2. Key Laboratory of Evidence Science, China University of Political Science and Law University, Beijing 100088, China

3. Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100088, China

Abstract

Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death, respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma (HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards (COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the prognostic model. The performance of the prognostic model was internally validated using single-factor COX regression, multifactor COX regression, Kaplan–Meier analysis, principal component analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples from the Gene Expression Omnibus (GEO) database for external validation. The constructed model, based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has been implicated in various cancers. To further investigate, we employed small interfering RNAs (siRNAs) to knock down AURKA expression and conducted functional experiments. The results demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.

Funder

Young Scientist Project of National Key Research and Development Program of China

National Natural Science Foundation of China

State Key Laboratory of Medicine, Chemistry and Biology

Key Project of Tianjin Municipal Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3