The CaMK Family Differentially Promotes Necroptosis and Mouse Cardiac Graft Injury and Rejection

Author:

Lu Haitao12,Jiang Jifu1,Min Jeffery1,Huang Xuyan1,McLeod Patrick1,Liu Weihua2,Haig Aaron2,Gunaratnam Lakshman1345ORCID,Jevnikar Anthony M.1345,Zhang Zhu-Xu1245ORCID

Affiliation:

1. Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada

2. Department of Pathology, Western University, London, ON N6A 3K7, Canada

3. Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada

4. Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada

5. Division of Nephrology, Department of Medicine, Western University, London, ON N6A 3K7, Canada

Abstract

Organ transplantation is associated with various forms of programmed cell death which can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis plays a key role in promoting transplant injury. Recently, we have found that mitochondria function is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2 indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01) in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell death in two different pathways and may be potential therapeutic targets in preventing cell death and transplant injury.

Funder

Canadian Institutes of Health Research

Publisher

MDPI AG

Reference44 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3