Load Recognition in Home Energy Management Systems Based on Neighborhood Components Analysis and Regularized Extreme Learning Machine

Author:

Cabral Thales W.1ORCID,Neto Fernando B.2,de Lima Eduardo R.3,Fraidenraich Gustavo1ORCID,Meloni Luís G. P.1ORCID

Affiliation:

1. Department of Communications, School of Electrical and Computer Engineering, University of Campinas, Campinas 13083-852, Brazil

2. Companhia Paranaense de Energia, Curitiba 81200-240, Brazil

3. Department of Hardware Design, Instituto de Pesquisa Eldorado, Campinas 13083-898, Brazil

Abstract

Efficient energy management in residential environments is a constant challenge, in which Home Energy Management Systems (HEMS) play an essential role in optimizing consumption. Load recognition allows the identification of active appliances, providing robustness to the HEMS. The precise identification of household appliances is an area not completely explored. Gaps like improving classification performance through techniques dedicated to separability between classes and models that achieve enhanced reliability remain open. This work improves several aspects of load recognition in HEMS applications. In this research, we adopt Neighborhood Component Analysis (NCA) to extract relevant characteristics from the data, seeking the separability between classes. We also employ the Regularized Extreme Learning Machine (RELM) to identify household appliances. This pioneering approach achieves performance improvements, presenting higher accuracy and weighted F1-Score values—97.24% and 97.14%, respectively—surpassing state-of-the-art methods and enhanced reliability according to the Kappa index, i.e., 0.9388, outperforming competing classifiers. Such evidence highlights the promising potential of Machine Learning (ML) techniques, specifically NCA and RELM, to contribute to load recognition and energy management in residential environments.

Funder

Companhia Paranaense de Energia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3