Abstract
The paper below takes up the question of whether it is possible to transfer the notion of ‘semantic knowledge’—as a human process of making language generate and confer meanings—to machines, which have as one of their properties the capability of handling high amounts of information. This issue is presented in an extended introduction to the paper’s account of and solutions to this intricate problem. Thereafter, the theoretical notion of ‘knowledge’ is considered in its philosophical, and thereby scientific, context, and the basis of its modern import is pointed to being Immanuel Kant’s deliberations on a priori vs. a posteriori knowledge. The author’s solution to the predicament of modern ideas about knowledge is the proposed theory of Occurrence Logic, invented by the author, which abandons truth-values from valid reasoning, and this approach is briefly accounted for. It presupposes a theoretical model of human cognitive systems, and the author has such a model under development which, in the future, may be able to solve the question of what ‘semantic knowledge’ actually is. So far, the theoretical account in this paper points to the critical issue of whether natural language semantics can be grasped as words explaining words or must include the connection between words and objects in the world. The author is in favour of the last option. This leads to the question of the functions of the human brain as the organ connecting words with the outer world. The idea of the so-called ‘predictive brain’ is referred to as a possible solution to the brain/cognition issue, and the paper concludes with a suggestion that an emulation of the interaction between the mentioned cognitive systems may cast some new light on the field of Artificial Intelligence.
Subject
Industrial and Manufacturing Engineering
Reference26 articles.
1. Semantics;Lyons,1977
2. The Making of Intelligence;Richardson,2002
3. The Idea of the Brain. The Past and Future of Neuroscience;Cobb,2020
4. Greek Science;Lloyd,2012
5. https://plato.stanford.edu/entries/descartes/
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献