Dexamethasone Induces Changes in Osteogenic Differentiation of Human Mesenchymal Stromal Cells via SOX9 and PPARG, but Not RUNX2

Author:

Della Bella ElenaORCID,Buetti-Dinh AntoineORCID,Licandro Ginevra,Ahmad ParasORCID,Basoli Valentina,Alini Mauro,Stoddart Martin J.ORCID

Abstract

Despite the huge body of research on osteogenic differentiation and bone tissue engineering, the translation potential of in vitro results still does not match the effort employed. One reason might be that the protocols used for in vitro research have inherent pitfalls. The synthetic glucocorticoid dexamethasone is commonly used in protocols for trilineage differentiation of human bone marrow mesenchymal stromal cells (hBMSCs). However, in the case of osteogenic commitment, dexamethasone has the main pitfall of inhibiting terminal osteoblast differentiation, and its pro-adipogenic effect is well known. In this work, we aimed to clarify the role of dexamethasone in the osteogenesis of hBMSCs, with a particular focus on off-target differentiation. The results showed that dexamethasone does induce osteogenic differentiation by inhibiting SOX9 expression, but not directly through RUNX2 upregulation as it is commonly thought. Rather, PPARG is concomitantly and strongly upregulated, leading to the formation of adipocyte-like cells within osteogenic cultures. Limiting the exposure to dexamethasone to the first week of differentiation did not affect the mineralization potential. Gene expression levels of RUNX2, SOX9, and PPARG were simulated using approximate Bayesian computation based on a simplified theoretical model, which was able to reproduce the observed experimental trends but with a different range of responses, indicating that other factors should be integrated to fully understand how dexamethasone influences cell fate. In summary, this work provides evidence that current in vitro differentiation protocols based on dexamethasone do not represent a good model, and further research is warranted in this field.

Funder

AO Foundation

AO Trauma

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3