Serum APOA4 Pharmacodynamically Represents Administered Recombinant Human Hepatocyte Growth Factor (E3112)

Author:

Motoi Sotaro,Uesugi Mai,Obara Takashi,Moriya Katsuhiro,Arita Yoshihisa,Ogasawara Hideaki,Soejima Motohiro,Imai ToshioORCID,Kawano Tetsu

Abstract

Background: Hepatocyte growth factor (HGF) is an endogenously induced bioactive molecule that has strong anti-apoptotic and tissue repair activities. In this research, we identified APOA4 as a novel pharmacodynamic (PD) marker of the recombinant human HGF (rh-HGF), E3112. Methods: rh-HGF was administered to mice, and their livers were investigated for the PD marker. Candidates were identified from soluble proteins and validated by using human hepatocytes in vitro and an animal disease model in vivo, in which its c-Met dependency was also ensured. Results: Among the genes induced or highly enhanced after rh-HGF exposure in vivo, a soluble apolipoprotein, Apoa4, was found to be induced by rh-HGF in the murine liver. By using primary cultured human hepatocytes, the significant induction of human APOA4 was observed at the mRNA and protein levels, and it was inhibited in the presence of a c-Met inhibitor. Although mice constitutively expressed Apoa4 mRNA in the small intestine and the liver, the liver was the primary organ affected by administered rh-HGF to strongly induce APOA4 in a dose- and c-Met-dependent manner. Serum APOA4 levels were increased after rh-HGF administration, not only in normal mice but also in anti-Fas-induced murine acute liver failure (ALF), which confirmed the pharmacodynamic nature of APOA4. Conclusions: APOA4 was identified as a soluble PD marker of rh-HGF with c-Met dependency. It should be worthwhile to clinically validate its utility through clinical trials with healthy subjects and ALF patients.

Funder

Japan Agency for Medical Research and Development

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3