Phenotypic and Functional Consequences of PLT Binding to Monocytes and Its Association with Clinical Features in SLE

Author:

Mariscal AnaísORCID,Zamora CarlosORCID,Magallares Berta,Salman-Monte Tarek CarlosORCID,Ortiz Mª ÀngelsORCID,Díaz-Torné Cesar,Castellví Iván,Corominas HéctorORCID,Vidal Silvia

Abstract

Platelets (PLTs) can modulate the immune system through the release of soluble mediators or through interaction with immune cells. Monocytes are the main immune cells that bind with PLTs, and this interaction is increased in several inflammatory and autoimmune conditions, including systemic lupus erythematosus (SLE). Our aim was to characterize the phenotypic and functional consequences of PLT binding to monocytes in healthy donors (HD) and in SLE and to relate it to the pathogenesis of SLE. We analyzed the phenotypic and functional features of monocytes with non-activated and activated bound PLTs by flow cytometry. We observed that monocytes with bound PLTs and especially those with activated PLTs have an up-regulated HLA-DR, CD86, CD54, CD16 and CD64 expression. Monocytes with bound PLTs also have an increased capacity for phagocytosis, though not for efferocytosis. In addition, monocytes with bound PLTs have increased IL-10, but not TNF-α, secretion. The altered phenotypic and functional features are comparable in SLE and HD monocytes and in bound PLTs. However, the percentages of monocytes with bound PLTs are significantly higher in SLE patients and are associated with undetectable levels of anti-dsDNA antibodies and hematuria, and with normal C3 and albumin/creatinine levels. Our results suggest that PLTs have a modulatory influence on monocytes and that this effect may be highlighted by an increased binding of PLTs to monocytes in autoimmune conditions.

Funder

Instituto de Salud Carlos III

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3