Bis-Pyrene Photo-Switch Open- and Closed-Form Differently Bind to ds-DNA, ds-RNA and Serum Albumin and Reveal Light-Induced Bioactivity

Author:

Orehovec Iva,Matković Marija,Pehar IsabelaORCID,Majhen DragomiraORCID,Piantanida IvoORCID

Abstract

Newly designed and synthesized diarylethene (DAE) derivatives with aliphatic amine sidearms and one with two pyrenes, revealed excellent photo-switching property of central DAE core in MeOH and water. The only exception was bis-pyrene analogue, its DAE core very readily photochemically closed, but reversible opening completely hampered by aromatic stacking interaction of pyrene(s) with cyclic DAE. In this process, pyrene fluorescence showed to be a reliable monitoring method, an open form characterized by strong emission at 480 nm (typical for pyrene-aggregate), while closed form emitted weakly at 400 nm (typical for pyrene-DAE quenching). Only open DAE-bis-pyrene form interacted measurably with ds-DNA/RNA by flexible insertion in polynucleotide grooves, while self-stacked closed form did not bind to DNA/RNA. For the same steric reasons, flexible open DAE-bis-pyrene form was bound to at least three different binding sites at bovine serum albumin (BSA), while rigid, self-stacked closed form interacted dominantly with only one BSA site. Preliminary screening of antiproliferative activity against human lung carcinoma cell line A549 revealed that all DAE-derivatives are non-toxic. However, bis-pyrene analogue efficiently entered cells and located in the cytoplasm, whereby irradiation by light (315–400 nm) resulted in a strong, photo-induced cytotoxic effect, typical for pyrene-related singlet oxygen species production.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3