Properties of Non-Aminoglycoside Compounds Used to Stimulate Translational Readthrough of PTC Mutations in Primary Ciliary Dyskinesia

Author:

Dabrowski MaciejORCID,Bukowy-Bieryllo ZuzannaORCID,Jackson Claire L.ORCID,Zietkiewicz Ewa

Abstract

Primary ciliary dyskinesia (PCD) is a rare disease with autosomal recessive inheritance, caused mostly by bi-allelic gene mutations that impair motile cilia structure and function. Currently, there are no causal treatments for PCD. In many disease models, translational readthrough of premature termination codons (PTC-readthrough) induced by aminoglycosides has been proposed as an effective way of restoring functional protein expression and reducing disease symptoms. However, variable outcomes of pre-clinical trials and toxicity associated with long-term use of aminoglycosides prompt the search for other compounds that might overcome these problems. Because a high proportion of PCD-causing variants are nonsense mutations, readthrough therapies are an attractive option. We tested a group of chemical compounds with known PTC-readthrough potential (ataluren, azithromycin, tylosin, amlexanox, and the experimental compound TC007), collectively referred to as non-aminoglycosides (NAGs). We investigated their PTC-readthrough efficiency in six PTC mutations found in Polish PCD patients, in the context of cell and cilia health, and in comparison to the previously tested aminoglycosides. The NAGs did not compromise the viability of the primary nasal respiratory epithelial cells, and the ciliary beat frequency was retained, similar to what was observed for gentamicin. In HEK293 cells transfected with six PTC-containing inserts, the tested compounds stimulated PTC-readthrough but with lower efficiency than aminoglycosides. The study allowed us to select compounds with minimal negative impact on cell viability and function but still the potential to induce PTC-readthrough.

Funder

National Science Centre from Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3