Suppression of PGC-1α Drives Metabolic Dysfunction in TGFβ2-Induced EMT of Retinal Pigment Epithelial Cells

Author:

Shu Daisy Y.ORCID,Butcher Erik R.ORCID,Saint-Geniez Magali

Abstract

PGC-1α, a key orchestrator of mitochondrial metabolism, plays a crucial role in governing the energetically demanding needs of retinal pigment epithelial cells (RPE). We previously showed that silencing PGC-1α induced RPE to undergo an epithelial-mesenchymal-transition (EMT). Here, we show that induction of EMT in RPE using transforming growth factor-beta 2 (TGFβ2) suppressed PGC-1α expression. Correspondingly, TGFβ2 induced defects in mitochondrial network integrity with increased sphericity and fragmentation. TGFβ2 reduced expression of genes regulating mitochondrial dynamics, reduced citrate synthase activity and intracellular ATP content. High-resolution respirometry showed that TGFβ2 reduced mitochondrial OXPHOS levels consistent with reduced expression of NDUFB5. The reduced mitochondrial respiration was associated with a compensatory increase in glycolytic reserve, glucose uptake and gene expression of glycolytic enzymes (PFKFB3, PKM2, LDHA). Treatment with ZLN005, a selective small molecule activator of PGC-1α, blocked TGFβ2-induced upregulation of mesenchymal genes (αSMA, Snai1, CTGF, COL1A1) and TGFβ2-induced migration using the scratch wound assay. Our data show that EMT is accompanied by mitochondrial dysfunction and a metabolic shift towards reduced OXPHOS and increased glycolysis that may be driven by PGC-1α suppression. ZLN005 effectively blocks EMT in RPE and thus serves as a novel therapeutic avenue for treatment of subretinal fibrosis.

Funder

U.S. Department of Defense

National Eye Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3