The Roles of Calmodulin and CaMKII in Cx36 Plasticity

Author:

Zoidl Georg R.ORCID,Spray David C.ORCID

Abstract

Anatomical and electrophysiological evidence that gap junctions and electrical coupling occur between neurons was initially confined to invertebrates and nonmammals and was thought to be a primitive form of synaptic transmission. More recent studies revealed that electrical communication is common in the mammalian central nervous system (CNS), often coexisting with chemical synaptic transmission. The subsequent progress indicated that electrical synapses formed by the gap junction protein connexin-36 (Cx36) and its paralogs in nonmammals constitute vital elements in mammalian and fish synaptic circuitry. They govern the collective activity of ensembles of coupled neurons, and Cx36 gap junctions endow them with enormous adaptive plasticity, like that seen at chemical synapses. Moreover, they orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie the fundamental integrative processes, such as memory and learning. Here, we review the available mechanistic evidence and models that argue for the essential roles of calcium, calmodulin, and the Ca2+/calmodulin-dependent protein kinase II in integrating calcium signals to modulate the strength of electrical synapses through interactions with the gap junction protein Cx36.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3