Abstract
Carnivorous plants are exemplary natural sources of secondary metabolites with biological activity. However, the therapeutic antimicrobial potential of these compounds is limited due to intrinsic resistance of selected bacterial pathogens, among which Pseudomonas aeruginosa represents an extreme example. The objective of the study was to overcome the intrinsic resistance of P. aeruginosa by combining silver nanoparticles (AgNPs) with secondary metabolites from selected carnivorous plant species. We employed the broth microdilution method, the checkerboard titration technique and comprehensive phytochemical analyses to define interactions between nanoparticles and active compounds from carnivorous plants. It has been confirmed that P. aeruginosa is resistant to a broad range of secondary metabolites from carnivorous plants, i.e., naphthoquinones, flavonoids, phenolic acids (MBC = 512 µg mL−1) and only weakly sensitive to their mixtures, i.e., extracts and extracts’ fractions. However, it was shown that the antimicrobial activity of extracts and fractions with a significant level of naphthoquinone (plumbagin) was significantly enhanced by AgNPs. Our studies clearly demonstrated a crucial role of naphthoquinones in AgNPs and extract interaction, as well as depicted the potential of AgNPs to restore the bactericidal activity of naphthoquinones towards P. aeruginosa. Our findings indicate the significant potential of nanoparticles to modulate the activity of selected secondary metabolites and revisit their antimicrobial potential towards human pathogenic bacteria.
Funder
statutory funds for Laboratory of Biologically Active Compounds, IFB UG and MUG
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献