Potential Therapeutic Strategies and Substances for Facial Nerve Regeneration Based on Preclinical Studies

Author:

Yoo Myung ChulORCID,Chon Jinmann,Jung Junyang,Kim Sung Su,Bae Seonhwan,Kim Sang Hoon,Yeo Seung GeunORCID

Abstract

Despite advances in microsurgical technology and an improved understanding of nerve regeneration, obtaining satisfactory results after facial nerve injury remains a difficult clinical problem. Among existing peripheral nerve regeneration studies, relatively few have focused on the facial nerve, particularly how experimental studies of the facial nerve using animal models play an essential role in understanding functional outcomes and how such studies can lead to improved axon regeneration after nerve injury. The purpose of this article is to review current perspectives on strategies for applying potential therapeutic methods for facial nerve regeneration. To this end, we searched Embase, PubMed, and the Cochrane library using keywords, and after applying exclusion criteria, obtained a total of 31 qualifying experimental studies. We then summarize the fundamental experimental studies on facial nerve regeneration, highlighting recent bioengineering studies employing various strategies for supporting facial nerve regeneration, including nerve conduits with stem cells, neurotrophic factors, and/or other therapeutics. Our summary of the methods and results of these previous reports reveal a common feature among studies, showing that various neurotrophic factors arising from injured nerves contribute to a microenvironment that plays an important role in functional recovery. In most cases, histological examinations showed that this microenvironmental influence increased axonal diameter as well as myelination thickness. Such an analysis of available research on facial nerve injury and regeneration represents the first step toward future therapeutic strategies.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3