Abstract
Genomic and phylogenetic analyses of various invertebrate phyla revealed the existence of genes that are evolutionarily related to the vertebrate’s decapeptide gonadotropin-releasing hormone (GnRH) and the GnRH receptor genes. Upon the characterization of these gene products, encoding peptides and putative receptors, GnRH-related peptides and their G-protein coupled receptors have been identified. These include the adipokinetic hormone (AKH) and corazonin (CRZ) in insects and their cognate receptors that pair to form bioactive signaling systems, which network with additional neurotransmitters/hormones (e.g., octopamine and ecdysone). Multiple studies in the past 30 years have identified many aspects of the biology of these peptides that are similar in size to GnRH and function as neurohormones. This review briefly describes the main activities of these two neurohormones and their receptors in the fruit fly Drosophila melanogaster. The similarities and differences between Drosophila AKH/CRZ and mammalian GnRH signaling systems are discussed. Of note, while GnRH has a key role in reproduction, AKH and CRZ show pleiotropic activities in the adult fly, primarily in metabolism and stress responses. From a protein evolution standpoint, the GnRH/AKH/CRZ family nicely demonstrates the developmental process of neuropeptide signaling systems emerging from a putative common ancestor and leading to divergent activities in distal phyla.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献