Advanced Modeling and Signal Processing Methods in Brain–Computer Interfaces Based on a Vector of Cyclic Rhythmically Connected Random Processes

Author:

Lupenko SerhiiORCID,Butsiy RomanORCID,Shakhovska NataliyaORCID

Abstract

In this study is substantiated the new mathematical model of vector of electroencephalographic signals, registered under the conditions of multiple repetitions of the mental control influences of brain–computer interface operator, in the form of a vector of cyclic rhythmically connected random processes, which, due to taking into account the stochasticity and cyclicity, the variability and commonality of the rhythm of the investigated signals have a number of advantages over the known models. This new model opens the way for the study of multidimensional distribution functions; initial, central, and mixed moment functions of higher order such as for each electroencephalographic signal separately; as well as for their respective compatible probabilistic characteristics, among which the most informative characteristics can be selected. This provides an increase in accuracy in the detection (classification) of mental control influences of the brain–computer interface operators. Based on the developed mathematical model, the statistical processing methods of vector of electroencephalographic signals are substantiated, which consist of statistical evaluation of its probabilistic characteristics and make it possible to conduct an effective joint statistical estimation of the probability characteristics of electroencephalographic signals. This provides the basis for coordinated integration of information from different sensors. The use of moment functions of higher order and their spectral images in the frequency domain, as informative characteristics in brain–computer interface systems, are substantiated. Their significant sensitivity to the mental controlling influence of the brain–computer interface operator is experimentally established. The application of Bessel’s inequality to the problems of reducing the dimensions (from 500 to 20 numbers) of the vectors of informative features makes it possible to significantly reduce the computational complexity of the algorithms for the functioning of brain–computer interface systems. Namely, we experimentally established that only the first 20 values of the Fourier transform of the estimation of moment functions of higher-order electroencephalographic signals are sufficient to form the vector of informative features in brain–computer interface systems, because these spectral components make up at least 95% of the total energy of the corresponding statistical estimate of the moment functions of higher-order electroencephalographic signals.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3