Abstract
Multi exposure image fusion (MEF) provides a concise way to generate high-dynamic-range (HDR) images. Although the precise fusion can be achieved by existing MEF methods in different static scenes, the corresponding performance of ghost removal varies in different dynamic scenes. This paper proposes a precise MEF method based on feature patches (FPM) to improve the robustness of ghost removal in a dynamic scene. A reference image is selected by a priori exposure quality first and then used in the structure consistency test to solve the image ghosting issues existing in the dynamic scene MEF. Source images are decomposed into spatial-domain structures by a guided filter. Both the base and detail layer of the decomposed images are fused to achieve the MEF. The structure decomposition of the image patch and the appropriate exposure evaluation are integrated into the proposed solution. Both global and local exposures are optimized to improve the fusion performance. Compared with six existing MEF methods, the proposed FPM not only improves the robustness of ghost removal in a dynamic scene, but also performs well in color saturation, image sharpness, and local detail processing.
Funder
National Natural Science Foundation of China
Chongqing Natural Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献