Stochastic Modeling of Smartphones GNSS Observations Using LS-VCE and Application to Samsung S20

Author:

Zangenehnejad Farzaneh1,Gao Yang1ORCID

Affiliation:

1. Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

In recent years, numerous smartphones have been equipped with global navigation satellite system (GNSS) technology, enabling individuals to utilize their own devices for positioning and navigation purposes. In 2016, with the launch of a mobile app by Google, namely GnssLogger, smartphone users with Android version 7 or higher were able to record raw GNSS measurements (i.e., pseudorange, carrier phase, Doppler, and carrier-to-noise density ratio (C/N0)). Since then, enhancing the accuracy and efficiency of smartphone positioning has become an interesting area of research. Precise point positioning (PPP) is a powerful method providing precise real-time positioning of a single receiver, and it can be applied to smartphone observations as well. Achieving high-precision PPP requires selecting appropriate functional and stochastic models. In this study, we investigate the development of more reliable stochastic models for smartphone GNSS observations. The least-square variance component estimation (LS-VCE) method is applied to double-difference (DD) pseudorange and carrier phase observations from two Samsung S20s to obtain appropriate variances for GPS and GLONASS. According to the results, there is no significant correlation between the pseudorange and carrier phase observations of GPS and GLONASS on the L1 frequency. Furthermore, the quality of GLONASS carrier phase observations is comparable to that of GPS. The model’s performance is then assessed with respect to single-frequency precise point positioning (SF-PPP) using a dataset collected in kinematic mode from a Samsung S20 smartphone. A significant improvement of 25.1% and 32.7% on the root-mean-square (RMS) of horizontal positioning and the 50th percentile error, respectively, was achieved when employing the obtained stochastic model.

Funder

Natural Sciences and Engineering Research Council of Canada

Izaak Walton Killam Memorial Scholarship

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3