Effects of the Gully Land Consolidation Project on Runoff and Peak Flow Rate on the Loess Plateau, China

Author:

Wu Ge,Fu Suhua,Zhou Guiyun,Liu Chenguang

Abstract

The Gully Land Consolidation (GLC) project, aiming to create land for agriculture on the Loess Plateau, heavily interfered with the underlying surface and thus affected the hydrological process. The purpose of this study was to investigate the effects of the GLC on the surface runoff and peak flow rates of watershed on the Loess Plateau under different rainfall events and hydrological years. A GIS-based Soil Conservation Service Curve Number (SCS-CN) model was used. The results showed that GLC reduced the mean event surface runoff by 6.2–24.7%, and the reducing efficiency was the highest under light rain events. GLC also decreased annual surface runoff, and the reducing efficiency was 12.04% (normal year) > 7.63% (wet year) > 4.45% (dry year). In addition, GLC decreased the peak flow rate of the watershed by 8.1–30.2% and prolonged the time to peak flow rate. The efficiency of GLC in reducing the peak flow rate was higher under light rain events than that under extraordinary storm events. The reason for the decrease in runoff and peak flow rate after GLC was that the GLC decreased the slope gradient and hydrological connectivity of the watershed. The results will provide guidance for the application of GLC on the Loess Plateau and watershed management for similar regions.

Funder

State Key Program of the National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3