Overview of Time Synchronization for IoT Deployments: Clock Discipline Algorithms and Protocols

Author:

Yiğitler HüseyinORCID,Badihi Behnam,Jäntti Riku

Abstract

Internet of Things (IoT) is expected to change the everyday life of its users by enabling data exchanges among pervasive things through the Internet. Such a broad aim, however, puts prohibitive constraints on applications demanding time-synchronized operation for the chronological ordering of information or synchronous execution of some tasks, since in general the networks are formed by entities of widely varying resources. On one hand, the existing contemporary solutions for time synchronization, such as Network Time Protocol, do not easily tailor to resource-constrained devices, and on the other, the available solutions for constrained systems do not extend well to heterogeneous deployments. In this article, the time synchronization problems for IoT deployments for applications requiring a coherent notion of time are studied. Detailed derivations of the clock model and various clock relation models are provided. The clock synchronization methods are also presented for different models, and their expected performance are derived and illustrated. A survey of time synchronization protocols is provided to aid the IoT practitioners to select appropriate components for a deployment. The clock discipline algorithms are presented in a tutorial format, while the time synchronization methods are summarized as a survey. Therefore, this paper is a holistic overview of the available time synchronization methods for IoT deployments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference190 articles.

1. Project Final Report: RFID and the Inclusive Model for the Internet of Things,2009

2. Synchronization Abstractions and Separation of Concerns as Key Aspects to the Interoperability in IoT;Moreno,2016

3. Capillary networks–a smart way to get things connected;Sachs;Ericsson Rev.,2014

4. Wireless sensor networks: a survey

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3