Optimal Operation of Floodwater Resources Utilization of Lakes in South-to-North Water Transfer Eastern Route Project

Author:

Yang Zitong,Huang Xianfeng,Liu Jiao,Fang Guohua

Abstract

In order to meet the demand of emergency water supply in the northern region without affecting normal water transfer, considering the use of the existing South-to-North Water Transfer eastern route project to explore the potential of floodwater resource utilization in the flood season of Hongze Lake and Luoma Lake in Jiangsu Province, this paper carried out relevant optimal operating research. First, the hydraulic linkages between the lakes were generalized, then the water resources allocation mode and the scale of existing projects were clarified. After that, the actual available amount of flood resources in the lakes was evaluated. The average annual available floodwater resources in 2003–2017 was 1.49 billion m3, and the maximum available capacity was 30.84 billion m3. Then, using the floodwater resource utilization method of multi period flood limited water levels, the research period was divided into the main flood season (15 July to 15 August) and the later flood season (16 August to 10 September, 11 September to 30 September) by the Systematic Clustering Analysis method. After the flood control calculation, the limited water level of Hongze Lake in the later flood season can be raised from 12.5 m to 13.0 m, and the capacity of reservoir storage can increase to 696 million m3. The limited water level of Luoma Lake can be raised from 22.5 m to 23.0 m (16 August to 10 September), 23.5 m (11 September to 30 September), and the capacity of reservoir storage can increase from 150 to 300 million m3. Finally, establishing the floodwater resource optimization model of the lake group with the goals of maximizing the floodwater transfer amount and minimizing the flood control risk rate, the optimal water allocation scheme is obtained through the optimization algorithm.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3