Life Cycle Assessment of Electric Vehicles and Hydrogen Fuel Cell Vehicles Using the GREET Model—A Comparative Study

Author:

Wong Eugene Yin Cheung,Ho Danny Chi Kuen,So Stuart,Tsang Chi-Wing,Chan Eve Man HinORCID

Abstract

Facing global warming and recent bans on the use of diesel in vehicles, there is a growing need to develop vehicles powered by renewable energy sources to mitigate greenhouse gas and pollutant emissions. Among the various forms of non-fossil energy for vehicles, hydrogen fuel is emerging as a promising way to combat global warming. To date, most studies on vehicle carbon emissions have focused on diesel and electric vehicles (EVs). Emission assessment methodologies are usually developed for fast-moving consumer goods (FMCG) which are non-durable household goods such as packaged foods, beverages, and toiletries instead of vehicle products. There is an increase in the number of articles addressing the product carbon footprint (PCF) of hydrogen fuel cell vehicles in the recent years, while relatively little research focuses on both vehicle PCF and fuel cycle. Zero-emission vehicles initiative has also brought the importance of investigating the emission throughout the fuel cycle of hydrogen fuel cell and its environmental impact. To address these gaps, this study uses the life-cycle assessment (LCA) process of GREET (greenhouse gases, regulated emissions, and energy use in transportation) to compare the PCF of an EV (Tesla Model 3) and a hydrogen fuel cell car (Toyota MIRAI). According to the GREET results, the fuel cycle contributes significantly to the PCF of both vehicles. The findings also reveal the need for greater transparency in the disclosure of relevant information on the PCF methodology adopted by vehicle manufacturers to enable comparison of their vehicles’ emissions. Future work will include examining the best practices of PCF reporting for vehicles powered by renewable energy sources as well as examining the carbon footprints of hydrogen production technologies based on different methodologies.

Funder

The Government of Hong Kong Special Administrative Region

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference43 articles.

1. China Eyes Eventual Ban of Petrol and Diesel Carshttps://www.ft.com/content/d3bcc6f2-95f0-11e7-a652-cde3f882dd7b

2. Decarbonizing Logistics: Distributing Goods in a Low Carbon World,2018

3. Ban New Petrol and Diesel Cars in 2030, Not 2040, Says Thinktankhttps://www.theguardian.com/environment/2018/mar/18/uk-should-bring-2040-petrol-and-diesel-car-ban-forward-2030-green-alliance

4. CO2 Emissions from Fuel Combustion,2012

5. CO2 Emissions from Fuel Combustion 2017,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3