Application of Full Factorial Design Method for Optimization of Heavy Metal Release from Lead Smelting Slag

Author:

Gürkan Elif Hatice,Tibet YusufORCID,Çoruh Semra

Abstract

Lead-acid batteries are commonly used as power sources for critical operations in the world. They find application in air-traffic control towers, uninterruptible power supplies (UPS), railroad crossings, military installations, hospitals, and weapons systems. Lead-acid batteries are also known as automotive batteries and industrial batteries. Lead-acid batteries consist of large amounts of lead, sulphuric acid, and plastics. The acid is tremendously irritant and a carrier for soluble information. The lead must control because of a range of adverse health effects. Thus, a collectible system that is easily accessible for waste batteries is needed. In this paper, a sustainable model is proposed for the leaching of lead-acid battery slag. The aim is to optimize the leaching of lead-acid batteries slag with natural materials. The leaching characteristic of the lead smelting slag produced using sepiolite and illite. A 23 full factorial design model is used to investigate the combination of the effect of variable factors.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3