Interrelationships of Chemical, Physical and Biological Soil Health Indicators in Beef-Pastures of Southern Piedmont, Georgia

Author:

Dahal SubashORCID,Franklin Dorcas H.,Subedi Anish,Cabrera Miguel L.,Ney Laura,Fatzinger Brendan,Mahmud Kishan

Abstract

The study of interrelationships among soil health indicators is important for (i) achieving better understanding of nutrient cycling, (ii) making soil health assessment cost-effective by eliminating redundant indicators, and (iii) improving nitrogen (N) fertilizer recommendation models. The objectives of this study were to (i) decipher complex interrelationships of selected chemical, physical, and biological soil health indicators in pastures with history of inorganic or broiler litter fertilization, and (ii) establish associations among inorganic N, potentially mineralizable N (PMN), and soil microbial biomass (SMBC), and other soil health indicators. In situ soil respiration was measured and soil samples were collected from six beef farms in 2017 and 2018 to measure selected soil health indicators. We were able to establish associations between easy-to-measure active carbon (POXC) vs. PMN (R2 = 0.52), and N (R2 = 0.43). POXC had a noteworthy quadratic relationship with N and nitrate, where we found dramatic increase of N and nitrate beyond an inflection point of 500 mg kg−1 POXC. This point may serve as threshold for soil health assessment. The relationships of loss-on-ignition (LOI) carbon with other soil health indicators were discernable between inorganic- and broiler litter-fertilized pastures. We were able to establish association of SMBC with other soil variables (R2 = 0.76) and there was detectable difference in SMBC between inorganic-fertilized and broiler litter-fertilized pastures. These results could be useful for cost-effective soil health assessment and optimization of N fertilizer recommendation models to improve N use efficiency and grazing system sustainability.

Funder

USDA-NRCS

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3