Investigation of Measurement Accuracy of Bridge Deformation Using UAV-Based Oblique Photography Technique

Author:

He Shaohua,Guo Xiaochun,He Jianyan,Guo Bo,Zheng Cheng

Abstract

This paper investigates the measurement accuracy of unmanned aerial vehicle-based oblique photography (UAVOP) in bridge deformation identifications. A simply supported concrete beam model was selected and measured using the UAVOP technique. The influences of several parameters, such as overall flight altitude (h), local shooting distance (d), partial image overlap (λ), and arrangement of control points, on the quality of the reconstructed three-dimensional (3D) beam model, were presented and discussed. Experimental results indicated that the quality of the reconstructed 3D model was significantly improved by the fusion overall-partial flight routes (FR), of which the reconstructed model quality was 46.7% higher than those with the single flight route (SR). Despite the minimal impact of overall flight altitude, the reconstructed model quality prominently varied with the local shooting distance, partial image overlap, and control points arrangement. As the d decreased from 12 m to 8 m, the model quality was improved by 48.2%, and an improvement of 42.5% was also achieved by increasing the λ from 70% to 80%. The reconstructed model quality of UAVOP with the global-plane control points was 78.4% and 38.4%, respectively, higher than those with the linear and regional control points. Furthermore, an optimized scheme of UAVOP with control points in global-plane arrangement and FR (h = 50 m, d = 8 m, and λ = 80%) was recommended. A comparison between the results measured by the UAVOP and the total station showed maximum identification errors of 1.3 mm. The study’s outcomes are expected to serve as potential references for future applications of UAVOP in bridge measurements.

Funder

Guangdong Basic and Applied Basic Research Foundation, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3